On some applications of Bogoliubov method for hyperbolic equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
AGE Method For Hyperbolic Equations
In this paper, we present a four order unconditionally stable implicit scheme for hyperbolic equations. Based on the scheme a class of parallel alternating group explicit (AGE) iterative method is derived, and convergence analysis is given. Results of numerical experiments show the iterative method can fast converge to the exact solution. Mathematics Subject Classification: 65M06, 74S20
متن کاملA dissipative Galerkin method applied to some quasilinear hyperbolic equations
— À nonstandard continuous-in-time Galerkin method, based on piecewise polynomial spaces, is applied io the periodic initial value problem for the équation ut = a(x, ty u)ux + ƒ(*, ty «). Under the condition that a(x, t, u) > «o > 0 for the solution, optimal order L error estimâtes are derived.
متن کاملA Simplified Galerkin Method for Hyperbolic Equations
We modify a Galerkin method for nonlinear hyperbolic equations so that it becomes a simpler method of lines, which may be viewed as a collocation method. The high order of accuracy is preserved. We present a linear wave analysis of the scheme and discuss some aspects of nonlinear problems. Our numerical experiments indicate that the addition of a proper artificial viscosity makes the method com...
متن کاملSome classifications of hyperbolic vector evolution equations
Motivated by recent work on integrable flows of curves and 1+1 dimensional sigma models, several O(N)-invariant classes of hyperbolic equations Utx = f(U,Ut, Ux) for an N -component vector U(t, x) are considered. In each class we find all scalinghomogeneous equations admitting a higher symmetry of least possible scaling weight. Sigma model interpretations of these equations are presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1975
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-31-1-1-13